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Abstract. In this paper, we present a comparative analysis of five meth-
ods for constructing ride-sharing pools of users, focusing on their effi-
ciency in terms of execution time, the percentage of user requests ful-
filled, the distance of the detour made by the driver and the waiting
time of the passenger. Furthermore, we introduce a model able to simu-
late user demand, based on car usage data across different time intervals
in Belgium. Then, we use the proposed model as a basis for evaluating
the performance of the five methods and their variants: OD Similarity,
OD Clustering, OD Time Alignment, Trip Similarity, and Trip Buffering.

Keywords: Car-Pooling · Trip-Matching · Ride-Sharing · Sustainable
Mobility · Smart Transportation · Road Networks.

1 Introduction

For several decades, the use of private vehicles has exploded, leading to an in-
crease in traffic congestion, pollution and accidents. Various solutions already
exist to reduce the reliance on private cars, we can first think of public trans-
port, for instance, as a promising alternative. However, since not all cities around
the world have a well-developed public transport network, ride-sharing seems to
be the most viable alternative for users in terms of economy, ecology and com-
fort [4]. In addition, according to [20], Peer-to-Peer (P2P) ride-sharing is the
most flexible and lowest-cost mobility alternative.

Reducing the number of vehicles on the road appears to be essential from
an economical and ecological point of view. Indeed, in Europe Union (EU), in-
efficient urban mobility, and road congestion in particular, costs the EU around
119 billion dollars a year (2020) [15]. In the United States of America (USA),
the road congestion is estimated to be responsible for a cost of around 121 bil-
lion dollars a year (2019) [23]. From an ecological point of view, in EU, between
2014 and 2017, CO2 emissions from road transport rose by 45 million tonnes, or
5% [19]. In addition, the use of personal vehicles is a major source of urban air
pollution in Brussels, Stuttgart and Milan [28]. In USA, in 2021, CO2 emissions
from transportation in the United States totaled 1700 million tonnes, the most
from any sector of the economy. And in 2019, 40 million tonnes of greenhouse
gases, about 2% of all transportation-related emissions, were emitted because of
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traffic congestion [24]. As outlined in the aforementioned information, it is clear
that solving the challenges posed by ride-sharing, or car-pooling, has become a
major mobility issue in most regions.

Ride-pooling can be described as a shared transport system in which multiple
users take a common route, and therefore vehicle, to reach their different, or
common, destination [12]. This transport system is based on the shared use of
private vehicles or the shared use of vehicles provided by Mobility as a Ser-
vice (MaaS) companies. This system differs from the services of Transportation
Network Companies (TNCs), such as Uber and Lyft, which offer a low-cost alter-
native to taxis [20]. P2P rides-haring seek to gain the advantages of TNCs while
reducing their negative impact on the environment. The most suitable definition
for the study presented in this paper is ride-sharing through the use of private
vehicles. An extended definition provided by [22] is given in Text 1.

Private cars are utilized by various households or organizations in either a cen-
tralized (one large, open group) or decentralized system (several small, closed
groups). The vehicle is owned by one member of the carpool group or can be
jointly owned by several group members.

Text 1: Definition of ride-sharing.

As accurately stated in [9], passengers and drivers might have multiple vary-
ing objectives and preferences that must be optimised and satisfied but often
these preferences are conflicting. For example, drivers aim to optimize their fi-
nancial gains, minimize daily service hours, and express preferences for specific
service areas, whereas passengers seek to minimize travel time, waiting time and
cost and may prioritize a comfortable journey with pleasant personal space. How-
ever, according to [9], offering a car sharing service that optimises all the above
objectives while simultaneously satisfying all preferences may not be feasible.
This is why in the following of this paper we will deal with only two preferences
and one objective. These preferences concern the maximum detours travelled by
the driver and the maximum waiting time of the passenger and the objective is
to maximise the number of satisfied passenger requests.

In this paper, we compare different methods for creating groups of users inter-
ested in carpooling. We evaluate these methods based on their execution time,
the percentage of user requests satisfied, the distance of the detour made by the
driver and the waiting time of the passenger. In addition, we propose a model
that simulates user demand based on car usage data across various time periods
for a day in Belgium. This approach provide insights into user behavior patterns,
allowing a robust comparison of the OD Similarity, OD Clustering, OD Time
Alignment, Trip Similarity, and Trip Buffering methods. We start by defining
the different mathematical elements used, secondly we present two similarity
functions, and then we detail different methods to generate pools of users. Next,
we introduce a model to simulate user requests in car-pooling and we compare
the results obtained by the different methods tested on this model and on ran-
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domized experiments with the two different similarity functions when possible,
and finally propose a series of future improvements for further research.

2 Similar works

To the knowledge of the authors, only a few reviews exist in the literature on the
ride-sharing problem. One of the most notable is provided by [25], in this review
the authors propose a classification of the various existing systems, distinguish-
ing between dynamic and static systems. They then subdivide the category of
dynamic systems into three parts: centralised, decentralised and hybrid systems.
For each of the static and dynamic systems, they propose a distinction between
systems that use heuristics and those that do not. Also, they compare the advan-
tages and disadvantages of each system. Another notable review is that provided
by [20], in their article they compare a series of flexible, dynamic, ride-sharing
systems on the basis of five criteria, the use of flexible paths, the use of multi-
hop, the possibility of having multiple rides and whether the solution is optimal.
They note that few systems meet all the criteria at the same time, and that the
execution times of the systems presented are too long to be used in large-scale
real-life applications. The authors then propose two novel approaches to increase
the performance of a ride-sharing system, one of which uses the Ellipsoid Spa-
tiotemporal Accessibility Method (ESTAM), an idea similar was proposed in [2],
to find the optimal meeting point between a passenger and a driver.

There exists a diverse array of strategies for user matching methods in car-
pooling, all aimed at optimizing passenger-driver pairing for efficient transporta-
tion solutions. Traditional approaches often rely on heuristic algorithms, such as
nearest neighbor, greedy algorithms or evolutionary algorithms, which prioritize
proximity and availability. For instance in [8], they present two heuristic algo-
rithms based on greedy method and the time-space network for the case of one
origin to many destinations and many origins to one destination in the context
of dynamic taxi-pooling problem. In [11], the authors demonstrate the effective-
ness of evolutionary algorithms in minimizing total trip costs for distributing
passengers traveling from a common origin to different destinations in multiple
taxis. Another popular method to solve this problem is to use an operational
search approach. In [3], the authors have developed an approximation algorithm
for assigning cars to requests while aiming to minimize costs. Their algorithm
guarantees solutions with at most 2.5 times the optimal cost, and experiments
show that it often achieves a better ratio, around 1.2, on synthetic data.

Additionally, collaborative filtering methods, inspired by recommender systems,
consider user preferences and historical data to improve matching accuracy.
Among others, the model proposed by [9], MaMoP, uses social reasoning and
evolutionary algorithms to simultaneously optimise ride-sharing solutions and
take account of user preferences. In [26], they integrate user personality prefer-
ences into a matching model for passengers in ride-sharing systems. They modify
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the stable roommates problem algorithm for one-on-one passenger matching and
consider factors such as personality and steadiness. In [1], the authors propose
an algorithm to improve the matching optimization, taking into account the
gender, age, professional status and the social tendencies of the participants.
In addition, the proposed algorithm subdivides the unmatched segments of the
path of the drivers, generating new trip requests to create additional matches
using these unmatched segments. In [29], they present a model in which rid-
ers are matched based on a specific set of human characteristics using machine
learning techniques. After trip completion, they record the user feedback and
compute two main characteristics that are most important to riders. The regis-
tered and the computed characteristics are fed to a classification module, which
later predicts the two main characteristics for new riders. And finally in [7], the
authors propose a recommender system for carpooling services that leverages
on learning-to-rank techniques to automatically derive the personalised ranking
model of each user from the history of her choices (i.e., the type of accepted or
rejected shared rides). Then, the system builds the list of recommended rides in
order to maximise the success rate of the offered matches.

Nevertheless, there appears to be a lack of practical evaluations of existing al-
gorithms for generating user pools in the context of ride-sharing. Consequently,
this article aims to address this gap in the current literature.

3 Problem formulation

In this section, we describe the theoretical background from which the pooling
methods presented further on have been developed.

First, it is worth noting that the ride-sharing issue is classified under the
classic Dial-a-Ride Problem (DARP) [21], known for its NP-hard complexity [27].
Within DARP, passengers request rides from designated origins op to specific
destinations dp. Therefore, we define the directed weighted graph G = {V,E}
with V = {v1, v2, ..., vn/vi ∈ ∩ G}, i.e. the set of road intersections. The edges
of G = {V,E} are define as E = {arc(i, j)/i ∈ V, j ∈ V }, i.e. the set of roads
between these intersections. For each arc(i, j), a non-negative travel cost δ(i, j) is
associated, which corresponds to the distance of the road between intersections i
and j, each arc(i, j) also have a travel speed σu(i, j) depending on the user u. We
denote by pu(i, j) the subset of V containing the sequence of nodes {v1, v2, ..., vn}
from the arcs included in path of user u to travel from the source i to the
destination j. The travel time for user u to complete path pu(i, j), τu(i, j), is
given by the Equation 1.

τu(i, j) =
∑

v,v′∈pu(i,j)

(
δ(v, v′)

σu(v, v′)

)
(1)

In this review, we distinguish between two types of user u, drivers ud and
passengers up. Let U be the set of users, P the set of pools, Pi the pool containing
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one user ud and multiple users up, and np the number of passengers in the pool
Pi. In each of the methods presented, we aim to create pools consisting of a single
driver ud accompanied by at least one passenger up, the number of passengers
nup not exceeding the maximum number of seats available in the vehicle vcapacity.

4 Similarity functions

In this section, we describe the different similarity functions that will be used
in the rest of this article to create user pools thanks to the different methods
presented in section 5. These two functions are deployed to determine how similar
two users are according to distance or time criteria. One uses only the origin and
destination, while the other uses the path taken by the users. In the following, all
computations of distance or time between two points are based on the shortest
path found by the Dijsktra [10] algorithm.

4.1 Distance similarity

A common metric used to quantify the similarity between two points is the
Euclidean distance. Thus, the Euclidean distances between the origins and the
destinations are given by δ(oi, oj) and δ(di, dj) respectively. By combining these
two distances, we obtain the similarity function between two users i and j given
by the Equation 2.

sim(i, j) = exp

(
−α ·

(
δ(oi, oj)

γo
+

δ(di, dj)

γd

))
(2)

Where α is a scaling factor to adjust the importance of the distance and γo
and γd are scaling parameters that control the spread of the similarity function.
The larger the value of α, the more emphasis is placed on the proximity of both
origins and destinations.

This similarity function can be modified to take into account the average origin
and destination of a group of users, a pool, enabling it to be used iteratively
in one of the methods presented later. This function is defined in the same way
as before, but with the addition of the current pool’s average origin opool and
average destination dpool. Where γpoolo and γpoold are scaling parameters that
control the spread of the similarity function. This modified similarity function
is given by Equation 3.

sim(i, j) = exp

(
−α ·

(
δ(oi, oj)

γo
+

δ(di, dj)

γd
+

δ(opool, oj)

γpoolo
+

δ(dpool, dj)

γpoold

))
(3)
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4.2 Trip similarity

Another way of creating user pools is to define the similarity between users on
the basis of their paths rather than just their origin and destination. For this we
use the similarity function defined by Equation 4, where the length of a path is
given by n and the node viu is the ith node on the path of the user u.

sim(pud
, pup

) =

∑n
i=0 psim(viud

, viud
)

n
(4)

In [16] the authors use the spatio-temporal similarity measure between two
nodes in the graph define by the Equation 5.

psim(vud , vud) = exp

w1 × ln
(

1
1+δ(vud

,vud
)

)
+ w2 × ln

(
1

1+∆τ(vud
,vud

)

)
w1 + w2

 (5)

Where δ(vud
, vud

) is the spatial Euclidean distance of two points, ∆τ(vud
, vud

)
is the absolute difference of the points in time and w1 and w2 are the weight
given to the distance and time factors. Thus, when w1 = 1 and w2 = 0 this
similarity function only takes into account the distance separating the pairs of
points on the two paths. Conversely, when w1 = 0 and w2 = 1, the function
only takes into account the travel time separating the pairs of points on the two
paths.

5 Pooling methods

In this section, we present and describe five methods to create user groups, pools,
for ride-sharing. Although these methods are different, they have a number of
common characteristics. The Trip Similarity and OD Time Alignment methods
both use the time criterion, the Trip Similarity and Trip Buffering methods
both use the paths of the users pu(o, d), the OD Similarity and OD Clustering
methods are based on the origin and destination points of the users (o, d), and
finally all the methods except OD Time Alignment use the notion of distance δ.

5.1 OD Similarity

This method consists of matching users who have similar origin and destination
locations. The objective is to find pairs of users i and j whose origins oi and oj
are close to each other and whose destinations di and dj are also close to each
other. To create pools of users with a maximum size of vcapacity and ensuring
that each pool contains at least one driver ud, we use the following steps:
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1. Select a driver ud from the set of available users and assign it to a pool.
2. For each remaining user up:

(a) Calculate the similarity between the origin and destination of up and
the average origin and average destination of the current pool using the
Equation 3.

(b) If the similarity exceeds a certain threshold, add up to the current pool.
(c) Repeat steps 2 and 3 until the pool reaches its maximum size vcapacity.

3. Remove all users in the current pool from the set of available users.
4. Repeat steps 2-4 until all users are assigned to a pool or stop the algorithm

if no more allocations are possible.

5.2 OD Clustering

This method consists of creating user groups by creating clusters based on the
distance similarity of the origin o and destination d points of users using the
Equation 2. First, we create a graph where the nodes are the users who have sent
their requests. We define this complete directed weighted graph as Gu = {V,E}
with V = {u1, u2, ..., un/ui ∈ ∩ U}, i.e. the set of user in U . The edges of
Gu = {V,E} are define as E = {sim(i, j)/i ∈ V, j ∈ V }, i.e. the similarity
values between each users. Then we use the Louvain algorithm [5] to create the
clusters, pools, based on the weights of the edges. The final pool construction is
subject to two constraints applied to the clusters found.

nup ≤ vcapacity (6)

nud
= 1 (7)

The constraint 6 ensures that the size of each cluster should be at most
vcapacity and the constraint 7 ensures that each cluster contains at least one
driver user.

5.3 OD Time Alignment

This method consists of optimizing the formation of the pools by matching users
with similar departure and arrival times. This approach minimizes waiting times
for users and ensures efficient utilization of vehicles. Let ∆τ(oup

, oud
) denote

the difference between the departure times of a passenger up and a drive ud.
Similarly, let ∆τ(dup , dud

) denote the difference between the arrival times of a
passenger up and a drive ud. A time threshold τthreshold is defined to determine
whether the departure and arrival times of a passenger and a driver are suffi-
ciently aligned for carpooling. Mathematically, the conditions for time alignment
is expressed by the Equations 8 and 9.
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∆τ(oup
, oud

) ≤ τthresholdo
(8)

∆τ(dup , dud
) ≤ τthresholdd

(9)

Then, to create the pools, we assign a number of vcapacity passengers up to
each driver ud, based on a ranking of the most similar departure and arrival
times.

5.4 Trip Similarity

This method consists of comparing different points on the path of two users from
a spatial and temporal point of view. Pools are created based on the groups of
users with the largest combined trip similarities. To define each individual trip i
based on the origin o and destination d we use Dijsktra [10] to find the shortest
path, pui(o, d). The similarity between two paths is given by the Equation 4.
Then we create pools of users based on this similarity measures. Let Pij be the
pool containing users ui and uj , and nij the total number of users in the pool
Pij . For each pair of users ui and uj with ui, uj ∈ U and i ̸= j:

1. Compute the similarity between the trips of ui and uj using Equation 4.
2. If sim(pud

, pup
) is greater than a certain threshold, then add ui and uj to

the same pool if there is exactly one driver user ud in the pool Pij and if
nij ≤ vcapacity.

Finally, instead of comparing each of the trip points of two users, we compare
their origins and destinations as well as N randomly selected trip points. This
choice of implementation greatly reduces the computation time while preserving
the characteristics of the method.

5.5 Trip Buffering

This method consists of creating pools based on the users that the driver meets
during his trip. Each driver has a buffer of a given distance δbuff or time τbuff .
If the origin op of an user up is in the buffer, the driver ud will make a detour to
pick him up and add it to his pool, otherwise he ignores it and continues on his
way to his destination. Let vd be the current position of ud in G. Mathematically,
the fact of taking a passenger can be expressed by the binary variable pup given
in the Equation 10.

pud
=

{
1, if ∃ user up such that δ(vd, op) ≤ δbuff or τ(vd, op) ≤ τbuff

0, otherwise
(10)
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To ensure correctness of the method, two constraints must be satisfied. The
first Constraint 11 ensures that the length of the detour is less than the maximum
detour length δdetourMAX tolerated by ud and the second Constraint 13 ensures
that there are still seats available in the vehicle. Let nup be the current number
of user up in the vehicle of user ud. If the variant of this method using detour
time rather than distance is selected, then the Constraint 11 is replaced by the
Constraint 12.

δdetour ≤ δdetourMAX · pud
(11)

τdetour ≤ τdetourMAX · pud
(12)

nup
≤ vcapacity · pud

(13)

For this method, there is no need to specify a constraint on the number of
drivers in the pool ud, as the pools are constructed from these drivers. It is
also important to specify that the detour constraint, 11 or 12 depending on the
preference, is also defined for the destination point of the passenger according
to the destination point of the driver. This avoids taking on passengers who are
on the same route but whose destination is not at all similar to the destination
of the driver.

As shown, this method can be modified to use travel time instead of distance
as presented above, so the distance buffer becomes a time buffer, the detour dis-
tance becomes the time taken by that detour and the maximum detour distance
becomes the maximum detour time tolerated by the driver.

6 Experimental setting

In this section, the various results obtained are presented. All experiments were
carried out on a Windows 11 OS equipped with an 8-core AMD Rizen 7 5800X
processor with a frequency of 3.80 GHz and 32 GB of RAM. For the sake of
quick prototyping the algorithms have been written in Python 3.10.11. The road
network, the graph, is stored in the form of a dictionary of dictionaries thanks
to the NetworkX library [14].

6.1 Road network

Table 1 shows the properties of the real road network G used in the two exper-
iments, the randomized and the simulation. These data come from information
available on Open Street Map thanks to the Python library OSMnx [6], each
node is a road intersection and each intersection is linked by roads, the edges.
These edges carry information such as the distance of the road, the speed limit,
the transit time, the type of road and its name.
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Table 1: Brussels road network specifications
Network Nodes Edges Max deg Avg. deg

Brussels 18547 40890 12 4.41

6.2 Modeling user requests

To evaluate the different methods presented, we simulated the user requests by
varying their occurrence according to the hour of the day. Fig. 1 shows the num-
ber of requests as a function of time; this model is based on real data collected
by [18] in Belgium, shown in Fig. 2. It should be noted that the proposed model
only takes into account the number of requests at each time of day, without
taking into account the real origin and destination points of users, which are
chosen randomly from the road network G.

Fig. 1: Simulation data generated by our model.

To create this model we used a combination of uniform random function. The
construction of the proposed model can be described as follow: Let N represent
the total number of user in the simulation and dh be the proportion of users at
time h with h in 0, 1, ..., 23. The dh values have been experimentally defined to
best match the real data from [18]. Let U(h, h + 1) represent a uniform distri-
bution over the interval [h, h + 1), and let nh represent the number of users in
hour h, which is calculated as nh = N × dh. The model generates nh random
numbers from U(h, h+1) for each hour h from 0 to 23. The distribution of users
for a hour h, Dh, is given by the Equation 14.

Dh = x1, x2, ..., xnh
where xi ∼ U(h, h+ 1) (14)

The final distribution D is the union of all Dh and is given by the Equation
15. Thus, the distribution D contains all the sub-distributions [D0, D1, ..., D23].
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Fig. 2: Real world data from [18].

D = D0 ∪D1 ∪ ... ∪D23 (15)

Then, for each user u joining the simulation at time τa, a request ru is
established. A query contains information on the point of origin o and destination
d in the graph G, the shortest path sp to join the od points, the departure time
τa in the simulation and the type of user m being the mode, either driver or
passenger. We denote a request as the set ru = (o, d, sp, τa,m)

7 Results

In this section, we present the results obtained by the five methods presented in
Section 5 as well as variants of these methods using one or other of the similarity
functions presented in Section 4. In total, we compare eight algorithms designed
to build pools of users for car-pooling.

The parameters of the tested methods are detailed in Table 2. For the OD
Time Alignment method, the τthresholdo and τthresholdd

values are equal and are
counted in seconds in the Threshold column. Similarly, the maximal detour in
term of distance and time for the two variants of the Trip Buffering methods
are noted in the Threshold column. For the OD Similarity method, the value of
γpoolo is equal to the value of γo and the value of γpoold is equal to the value of
γd. Note that each of these methods is scalable to any vehicle capacity and is
therefore adaptable to different scenarios. In the following, for each of the violin-
shaped plots, we carried out 50 experiments, for each experiment we selected
a random number, from 10 to 200, of simultaneous requests. The other results
were performed on a proportion of simultaneous user requests based on the model
presented in Section 6.2 with data points every 15 minutes throughout the day.
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Table 2: Methods parameters
Method Criteria vcapacity Threshold α γo γd N buff w1 w2

OD Similarity δ 4 0.0005 0.0001 5000 5000 - - - -
OD Clustering δ 4 0.0005 0.0001 5000 5000 - - - -
OD Time Alignment τ 4 40 - - - - - - -
Trip Similarity δ, τ 4 0.00055 - - - 2 - 0.5 0.5
Trip Similarity Dist δ, τ 4 0.00055 - - - 2 - 0.9 0.1
Trip Similarity Time δ, τ 4 0.00055 - - - 2 - 0.1 0.9
Trip Buffering Dist δ 4 5000 - - - - 8000 - -
Trip Buffering Time τ 4 10 - - - - 30 - -

7.1 Runtime

In this section we compare the running times of the different methods presented
in the Section 5.

Fig. 3: Average running time of the pooling methods.

On average, the methods OD Similarity and Trip Buffering using the distance
similarity function perform best as shown in the Fig. 3. On the other hand, the
OD Clustering method and the Trip Buffering method using the time similarity
are the two slowest methods on average. The reason why the Trip Buffering
method using time similarity is the slowest is due to the extra computation
needed to retrieve the driver’s travel time. And the reason why the OD Clustering
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method is slow may be explained by the extra time needed to build the user
network and to cluster this network using the Louvain method.

Fig. 4: Running time of the pooling methods according to the number of user
requests.

As can be seen in Fig. 4, the execution time for each of the different methods
tested depends directly on the number of simultaneous requests received. We
also note that the three variants of the Trip Similarity method are much more
sensitive to the number of queries than the other methods. Also, the two methods
that seem most robust to variations in the number of queries are OD Similarity
and Trip Buffering using the distance similarity function. During our simulation,
the best method, the Trip Buffering using the detour distance similarity, certifies
an average running time of between 3 and 17 seconds at peak times. It is also
worth to note that the execution time of the methods also depends on the size of
the graph being processed since all the methods require shortest path calculations
to obtain similarity values.

7.2 Requests satisfaction

In this section, we compare the average size of pools created as well as the average
satisfaction of the user requests of the different methods presented in Section 5.

Fig. 5 shows the average number of users, drivers and pedestrians, in each of
the pools created. Based on our user request simulation model, we can see that
the average vehicle occupancy across all methods exceeds 3 users, indicating that
the cars are nearly at maximum capacity. It can be seen that the OD Similarity
method is the ones for which the number of users is the most constant. The
smaller average pool size in the OD Time Alignment method can be attributed
to the random selection of requests. This randomness can result in significant
time differences and consequently lower similarities.
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Fig. 5: Average pool size of the pooling methods.

Fig. 6: Average satisfaction percentage of the pooling methods.

The satisfaction percentage is defined as the ratio between the number of
passengers in a pool and the total number of passengers multiplied by 100, over-
all average results are given by the Fig. 6 and the average results for each hour
of the day are given by the Fig. 7. Thanks to these two figures, we can see
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that, whether in randomized experiments or in the simulation, the OD Similar-
ity method performs most successfully, followed by the two variations of Trip
Buffering and Trip Similarity. The very high user demand satisfaction results of
the OD Similarity method can be attributed to the fact that the average pool
size is highly constant for this method and almost always equals the maximum
vehicle capacity vcapacity = 4. One of the reasons for the poor performance of
the OD Clustering method is that it depends on the Louvain algorithm to form
the pools, which is not deterministic. Also, on the basis of our user request sim-
ulation model, we can see that on average all the methods manage to satisfy at
least 30% of requests during rush hours.

Fig. 7: Average satisfaction percentage of the pooling methods according to the
number of user requests.

Furthermore, it is important to note that the percentage of satisfied users also
depends directly on the number of randomly selected drivers and the capacity
of their vehicles. Indeed, if there are not enough drivers and/or seats available
at time t, then unavoidably some passengers cannot be satisfied. So when there
are many requests, the probability of having more drivers increases, as does the
percentage of requests satisfied, as shown in Fig. 7. Similarly, when there are
fewer requests, only a few drivers are needed to satisfy the majority of requests.
As with the execution time criterion, we can see that all methods follow a similar
behavior, but this time it’s not correlated with the number of requests. In our
simulation, the best method, OD Similarity, certifies an average user satisfaction
between 35% and 100% during rush hours.

7.3 Driver detour distance

In this section, we compare the different methods based on the criterion of the
average detour made by the driver to pick up passengers. The detour is calculated
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by comparing the length of the direct path with the length of the path where the
driver picks up the passenger. The result is the average of these detour distances
for all pools of a method, in kilometers.

Fig. 8: Average detour distance for the driver by pooling methods.

In Fig. 8, we see that the method with the smallest average driver detour is
the variant of the Trip Buffering method using the detour distance as criteria.
This result is expected since it is the only method with a constraint on the
maximum detour accepted by the driver. Also, We observe that the version of
Trip Buffering based on the detour distance perform better in term of detour
than the one based on the detour time. We also note that the three variants of
Trip Similarity method perform equally well. This can be explained by the fact
that these methods take into account multiple nodes on the path, unlike the OD
Similarity and OD Clustering methods, which have the greatest deviation and
only take into account the origin and destination.

In Fig. 9, we note that for certain instances, the detour distance of several
methods is 0. This is due to the fact that the methods use the shortest path
calculation to determine similarity, which in some cases does not exist, only
the Trip Buffering method is not sensitive to this condition. For instance, for
the hours in [2, 4], all the detour distances are 0 because no user request can
be satisfied. The best method, the Trip Buffering using the detour distance
similarity, certifies an average driver detour between 4 and 10 kilometers during
rush hours.



7. RESULTS 17

Fig. 9: Average detour distance for the driver by pooling methods according to
the number of user requests.

7.4 Passenger waiting time

In this section, we compare the different methods on the basis of the average
waiting time of passengers before the driver comes to pick them up.

Fig. 10: Average waiting time for the passenger by pooling methods.

Fig. 10 shows that all the methods performed similarly in our randomized
experiment except for the OD Time Alignment method. Indeed, this method
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achieves significantly better results because the user pools are composed of pas-
sengers and a driver with similar departure times, consequently reducing the
average waiting time.

Fig. 11: Average waiting time for the passenger by pooling methods according to
the number of user requests.

Fig. 11 illustrates that passenger waiting time depends on the number of
user requests only when this number is below a certain threshold. Indeed, when
the number of requests is low, not enough drivers are among the users, and
passengers are therefore forced to wait longer. This suggests that increasing
the number of participants will lead to better performance in terms of waiting
time. This observation has also been made by [20] concerning the matching rate,
which also seems to be our case for the percentage of satisfied requests. Once this
threshold is reached, the waiting time for each method is stable. Although the
OD Time Alignment method is the best on average over 50 random experiments,
we can see from Fig. 11 that during our simulation the most constant method is
the OD Similarity, certifying an average passenger waiting time between 4 and
6 minutes during rush hours.

7.5 Overall comparison

To summarize the results discussed in this section, based on the different param-
eters presented earlier, we compared the eight methods by establishing a score
that is weighted sum of the criteria for the randomized experiment and for the
simulation. The weights assigned to the respective criteria are given in Table 3.

We are looking for the method that minimizes the execution time, the driver’s
detour and the passenger’s waiting time. This method must also maximize the
percentage of satisfied users and the number of users in each car. Thus, the
method with the highest score should be the one that best corresponds to the
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Table 3: Criteria weight
Criterion Weight

Running Time (s) -1.5
User Satisfaction (%) 1
Average Pool Size 1
Number of Pools 0
Average Detour by Driver (km) -1
Average Passenger Waiting Time (min) -1

objectives and preferences pursued in this research. The scores obtained are given
in Table 4.

Table 4: Method scores
Method Randomized experiment score Simulation score

Trip Buffering Dist -99.706951 36.447783
OD Similarity -100.205970 35.640391
OD Time Alignment -122.408349 16.648278
Trip Similarity Dist -158.499280 22.717071
Trip Similarity -159.199678 22.693013
Trip Similarity Time -161.330231 22.379183
Trip Buffering Time -169.952633 33.921981
OD Clustering -186.394580 18.173433

According to the weights chosen, the two methods that best satisfy the crite-
ria are, for both experiments, the Trip Buffering method using distance similarity
and the OD Similarity method.

8 Future works

For future improvements, we would like to modify the current proposed model.
First, it would be interesting to take a more extensive period of time to build a
more realistic model. Taking, for example, a full year, this would enable us to
study in detail the adaptability of the different methods to changes in demand
within the road network. Then, the model accuracy could be improved by tak-
ing intervals in minutes rather than hours, and by defining uniformly random
functions for 5 minute intervals for example. In addition, it would be interesting
to consider other types of distribution than Uniform, such as a model using a
Gaussian mixture, as was done in [3]. Finally, concerning the model, we made the
hypothesis that the number of requests in the city of Brussels followed the same
distribution as for the entire country of Belgium, therefore it would be more
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advisable to define a model for a specific city rather than for an entire country,
using to do so the population of the city comparatively to the population of
whole country, for example.

Still on the subject of the data used for the experiments, in the future we plan
to test the different methods and even combinations of methods on a real sample
of students from one university. Indeed, in the particular context of universities,
solving the ride-sharing challenge becomes important not only for the reasons
listed above but also because according to [17] around 78% of students travel
alone by car. In addition, according to [13], the propensity to practice peer-
to-peer car-pooling is higher among younger people. Thus, we will be able to
compare the theoretical results presented here with the results obtained under
real world conditions.

Concerning the methods themselves, as a first step, it would be interesting to
analyze the evolution of execution times for each method in relation to different
road network sizes, as well as to explore scalability issues and execution times
across larger datasets or varied urban environments other than the Brussels
road network, as some may scale very well and others not. In a second step, we
would like to test combinations of methods to try and get the best out of each
of them. For example, we could imagine using one method during rush hour
and another during calm periods. It would be valuable to analyse if this type
of hybrid strategy could have a positive impact on the percentage of satisfied
requests in the system.

Finally, regarding the preferences and objectives studied here, in the future
we would like to take into account the criterion of destination arrival time guar-
antees for passengers and drivers. Indeed, even if the waiting time is important,
such a system can only be viable in practice if it offers guarantees on the arrival
time. This new parameter should therefore be taken into account in the scoring
of the different methods.

9 Conclusion

We have proposed a comprehensive comparison of five methods for forming user
pools for ride-sharing. In addition, we presented two different similarity func-
tions, one based on time and the other on distance. We have proposed variants
of the five initial methods using these two similarity functions, and finally com-
pared the eight methods obtained. These methods were evaluated according to
five main criteria: running time, percentage of request satisfaction, pool size,
passenger waiting time and driver detour distance. In our experiments, whether
randomized or during simulation, the Trip Buffering method using the distance
similarity function always outperformed the other methods. Our results indi-
cate that the Trip Buffering method using the distance similarity function is
the most effective for optimizing the key metrics in ride-sharing. The presented
results were based on a user request simulation model that we have proposed for
Belgium, further supporting the robustness and applicability of our findings.
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