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Abstract. Human-Centered Robotics aims to use robotic devices to improve our life. In Europe alone, around 

650.000 people live with limb amputations, 40 Mio. have jobs with high of lumbar injuries, and 40 Mio. are 

80+ years. Worldwide, active prostheses, exoskeletons, and service robots could help improve these people's 

lives. However, their adoption is unfortunately strongly hindered by technological limitations in the actuators 

powering these devices. 
 

Backdrivability characterizes an actuator's ability to be driven from the load side, and it is a crucial property 

to enabling capable human-centered robotic devices. In this paper, we describe the underlying factors that 

determine actuator backdrivability in robotics and investigate suitable scaling laws to understand how these 

factors are conditioned by the motor and gearbox selection and the specific operational cycle of a robotic 

device. This analysis unveils the complexity and challenges faced to accurately model and predict this 

complex phenomenon, contradicting an extended hypothesis in the robotics community that sees low-ratio 

transmissions as the best strategy to build backdrivable, lightweight actuators.

1 Introduction  

Data collected from statista.com indicates that, in Europe 

alone, around 650.000 people live with limb amputations, 

40 Mio. have jobs with high risk of lumbar injuries, and 

40 Mio. are 80+ years. Human-centered robotic devices – 

active prostheses, exoskeletons, service robots,… – could   

improve the lives of these people, but this potential is 

currently hindered by some technological limitations of 

the actuators used to power these devices. 

Backdrivability characterizes the ability of an actuator 

to operate in reverse direction (driven from its output), 

enabling power flow from the outside world (load) into 

the motor. In [1], this meaning is restricted to breakaway 

conditions (starting the movement). Here, we follow the 

example of Nef. et al. [2] to extend backdrivability 

beyond breakaway conditions to include other operating 

conditions relevant for bidirectional energy exchange. 

In conventional industrial robots, robustness is linked 

to robot’s ability not to deviate from its position trajectory 

(dX) under an external disturbance force (dF). In contrast, 

in human-centered robotics, the close interaction between 

robots and humans requires low forces (dF) when there is 

a deviation from the position trajectory (dX) [3]. This 

makes operator safety a crucial constraint and links it to 

low mechanical impedance (dX/dF) – backdrivability – 

during interaction [4]. Accordingly, backdrivability can 

render human-robot collaboration safer, canceling the 

need for exteroceptive torque sensors and enabling 

broader control bandwidths [5]. 

The narrow link between backdrivability and control 

is also highlighted in haptics and fast-legged locomotion. 

In [6], the authors emphasize the importance of 

transmission transparency – closely related to actuator's 

backdrivability – to achieve good control performance in 

haptic devices and to cope with high forces and 

accelerations in fast-legged locomotion. When high 

contact forces are involved, good backdrivability helps 

also preserve the actuator's integrity. Comparing to 

biological muscles, Seok et al. assign pivotal relevance to 

the trade-off between torque density and backdrivability 

in electromagnetic actuation [6]. 

Beyond its crucial impact on safety and control, 

specific robotic applications may have other 

backdrivability requirements. In rehabilitation, 

backdrivability allows assist-as-needed control strategies 

that encourage patients’ participation and movement 

capability assessment [2]. In devices manually 

programmed by demonstration, such as cobots, 

backdrivability allows this operation with unpowered 

actuators, simplifying and reducing energy consumption 

[7]. On the other hand, in prosthetics and cobots, limited 

backdrivability can help hold a static position under load 

when the actuators are unpowered, enabling significant 

efficiency gains [5] and the use of lighter brakes. 

This paper's contribution lies in providing a holistic 

review of how design decisions on robotic actuation 

condition backdrivability and thus robotic performance. 

In the next section, we use the concept of reflected 

mechanical impedance to model the backdrivability of an 
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actuator and describe its main components. Section 3 

compiles the scaling laws to link these components with 

essential design choices for robotic actuation. Finally, the 

influence on overall actuator's backdrivability of the 

operating cycle is established through their differentiated 

effect on the main backdrivability parameters. A 

conclusion section closes this analysis. 

2 Reflected Mechanical Impedance 

We consider a conventional, reference robotic actuator 

consisting of an electric motor and a compact gearbox, as 

shown in Fig. 1. 

 

Fig. 1. Conventional, reference robotic actuator consisting of an 

electric motor and some form of a compact gearbox. 

The backdrivability of such an actuator is 

characterized by the mechanical impedance seen from its 

output (the load side). It corresponds to the frequency-

dependent relationship between resistive joint torques and 

angles [8] when driving the actuator from its natural 

output. Our proposed model sees the actuator as a mass-

spring-damper system with added Coulomb friction, such 

that we can describe the mechanical impedance of an 

actuator's output through the equation of motion: 

𝜏𝑏𝑐𝑘 = 𝐽𝑏𝑐𝑘 ∙ 𝜃�̈� + 𝐷𝑏𝑐𝑘 ∙ 𝜃�̇� + 𝐾𝑏𝑐𝑘 ∙ 𝜃𝑂 + 𝜏𝐶 + 𝜏𝑚     (1) 

𝜏𝑏𝑐𝑘 : backdriving torque 

𝐽𝑏𝑐𝑘 : backdriving moment of inertia along the rotor axis 

𝐷𝑏𝑐𝑘  : backdriving damping coefficient 

𝐾𝑏𝑐𝑘 : backdriving stiffness 

𝜃𝑂 : angular displacement of the actuator's output 

𝜏𝐶  : Coulomb (speed-independent) friction 

𝜏𝑚 : Torque supplied by the motor 

2.1 Backdriving Inertia 

Inertia characterizes the resistance of matter to any change 

in a body's momentum (product of mass and velocity). 

The speed-reduction ratio has a substantial impact on 

inertia. If we fix a body with inertia 𝐽𝑚 to the input of a 

gearbox, like, for example, the rotor of a motor in Fig. 1, 

and we then subject the gearbox to a backdriving torque 

𝜏𝑏, the body inertia is perceived from the gearbox output 

as a backdriving inertia 𝐽𝑏 given by: 

                𝐽𝑏𝑐𝑘 =
𝜏𝑏𝑐𝑘

�̈�𝑂
=

𝑖𝑔∙𝜏𝐼

(
�̈�𝐼
𝑖𝑔

)∙𝜂′
0

=
𝑖𝑔

2 ∙𝐽𝐼

𝜂0
                         (2) 

𝜂′
0
 : gearbox's backdriving efficiency under 𝜏𝑏𝑐𝑘 

𝑖𝑔 : gearbox's reduction ratio 

𝜏𝐼 : torque seen at the gearbox input under 𝜏𝑏 

𝜃𝐼 : angular displacement on gearbox input under 𝜏𝑏 

Fig. 2 shows a simple inertia model of a robotic 

actuator, corresponding to the description of Fig.1, in 

which the effect of efficiency is not included for 

simplicity. To account for the different angular speeds in 

the actuator, we assume a planetary configuration as a 

reference, in which the different elements are grouped 

based on same angular speed (and thus the same angular 

acceleration). The speed-reduction ratios are highlighted 

as orange boxes between the different gearbox elements. 

Fig. 2. Inertia model of a conventional robotic actuator from 

Fig.1. The compact robotic gearbox includes an input element, 

a carrier, one or more planet wheels, and an output element. Two 

operation modes are shown: (i) forward driving, with the motor 

driving the system and the load, and (ii) backdriving, when a 

backdriving load torque drives the actuator (and thus the motor). 

The actuator's constitutive elements are shown as blue boxes, 

while speed-reduction ratios relative to the gearbox input 

𝑖′
𝑃, 𝑖𝐶 , 𝑖𝑂  are shown as orange boxes. 

From left to right (forward driving direction), we first 

encounter the inertia of the electric motor's movable parts 

(rotor), fixed to the input element of the gearbox, which 

rotate at the same speed and around the same motor axis. 

Then, a first speed reduction ratio 𝑖′
𝑃  is encountered to 

account for a lower rotation speed of the planet-wheels 

around their own axis. The same procedure is used for the 

carrier subassembly element, which in this case rotates 

around the gearbox axis and includes the inertia of the 

planet wheels to this specific movement. Then again for 

the output element of the gearbox, which rotates at the 

same speed as the load, again around the gearbox central 

axis. This allows writing the forward-driving system 

inertia as: 

          𝐽𝑓𝑤𝑑 = (𝐽𝑀 + 𝐽𝐼) +
𝐽𝑃1

𝜂𝑃∙𝑖′
𝑃
2 +

𝐽𝐶

𝜂𝐶∙𝑖𝐶
2 +

(𝐽𝐿+𝐽𝑂)

𝜂𝑂∙𝑖𝑂
2          (3) 

where J respectively represents the inertia of the elements 

motor (M), input (I), planet-wheels (P), carrier and planet-

wheels (C), output (O), and load (L), shown in Fig.2, and 

𝜂𝑥 is an efficiency that takes into account the torque losses 

incurred from the gearbox input until the element "x," 
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which represents either the planet-wheels (x=P), carrier, 

and planet-wheels (x=C), or the gearbox output (x=O). 

From right to left (now thus in backdriving direction), 

we can do an analogous exercise to establish the 

backdriving's inertia of the system as: 

   𝐽𝑏𝑐𝑘 = 𝑖𝑂
2 ∙

(𝐽𝑀+𝐽𝐼)

𝜂′
𝑂

+
𝑖𝑂

2 ∙

𝑖′
𝑃
2 ∙

𝐽𝑃

𝜂′
𝑃

+
𝑖𝑂

2 ∙

𝑖𝐶
2 ∙

𝐽𝐶

𝜂′
𝐶

+ (𝐽𝐿 + 𝐽𝑂)     (4) 

where 𝜂′
𝑥
 represents now an efficiency that takes into 

account the torque losses incurred from the gearbox 

output until the same element "x" as in (3). 

In this exercise, the compound movement of the planet 

wheels – simultaneously rotating around their own axis 

and around the central axis of the gearbox – requires 

including the two corresponding inertias in our equations. 

For the rotation around its own axis, the right angular 

speed is 𝜃′̇
𝑃, seen from a non-inertial frame fixed to the 

carrier element and given by: 

𝜃′̇
𝑃 = �̇�𝑃 − �̇�𝐶 = 𝑖′

𝑃 ∙ �̇�𝐼                      (5) 

Comparing equations (3) and (4) and assuming in first 

instance that the forward and backdriving gearbox 

efficiencies are high enough to be disregarded (𝜂𝑥 ≈
𝜂′

𝑥
≈ 1 for x = O, P, C), we can write: 

                          𝐽𝑏𝑐𝑘 ≈ 𝑖𝑂
2 ∙ 𝐽𝑓𝑤𝑑                             (6) 

This indicates that, even when the actuator includes a 

gearbox with multiple stages, the backdriving inertia of 

the actuator is approximately equal to its forward inertia 

multiplied by the square of the reduction ratio of the 

gearbox in the actuator. As previously indicated, the 

accuracy of this approximation is directly dependent on 

the efficiency of the gearbox. 

Equations (3) and (4) highlight the high relevance of 

the speed reduction ratios in a gearbox's inertia. When 

high ratios are involved, equation (3) shows that during 

forward driving, most of the actuator's inertia that must be 

accelerated is usually that of the motor's rotor and the 

gearbox's input element. The effective inertia of the other 

gearbox's elements and the load are substantially reduced 

by the effect of the squared reduction ratios. 

Similarly, when large speed-reduction ratios are 

involved, equation (4) indicates that the inertias of the 

motor's rotor and the gearbox's input could play a 

dominant role in the backdriving inertia of the actuator, 

owing again to the effect of the squared gearbox reduction 

ratios. In [9], a numerical example with real data is 

provided, confirming that using only rotor inertia and 

gearbox input inertia to calculate actuator's inertia is, in 

this case, a good approximation.  

Yet, it is important to put in perspective the validity of 

this approach: inertia can also scale very fast with size, 

particularly in radial direction. In actuators where only 

moderate reduction ratios are used either for the complete 

gearbox or internally, between its constitutive elements, 

or which have substantial size differences in radial 

direction between stages, this approximation does not 

hold. In these cases, it is necessary to analyze the inertias 

and speeds of the different gearbox components 

separately and eventually also of the load. Indeed, 

suppose we calculate the moment of inertia for a cylinder 

(shaft), which is a valid first approximation for many of 

the rotating parts in a gearbox and an electric motor. In 

that case, we can see that inertia increases with the 4th 

power of the shaft's diameter: 

         𝐽𝑠ℎ𝑎𝑓𝑡 =  
1

2
∙ 𝑀 ∙ 𝑟𝑠ℎ𝑎𝑓𝑡

2 =
𝜋

2
∙ 𝜌 ∙ 𝐿 ∙ 𝑟𝑠ℎ𝑎𝑓𝑡

4         (7) 

𝐽𝑠ℎ𝑎𝑓𝑡  : moment of inertia of a shaft 

𝑀 : mass of the shaft  

𝑟𝑠ℎ𝑎𝑓𝑡  : radius of the shaft 

𝜌  : density of the material 

L  : length of the shaft 

2.2 Backdriving Losses 

Friction influences the backdriving torque through two 

main components, according to equation (1): backdriving 

damping and Coulomb friction. Additionally, resistive 

Joule losses must also be included for the motor:  

                                 𝜏𝐿 = 𝜏𝐶 + 𝜏𝐷 + 𝜏𝑅                            (8) 

𝜏𝐿  : actuator’s total loss torque, seen from its output 

𝜏𝐶   : actuator’s Coulomb friction torque 

𝜏𝐷   : actuator’s viscous friction torque 

𝜏𝐷   : actuator’s resistive (Joule) losses torque 

2.2.1 Gearbox Losses 

Gearbox losses can be classified depending on the 

element in which they originated, differentiating into 

load-dependent and load-independent losses, assuming 

that these two are independent of each other [10]: 

 𝑃𝐿,𝑔 = 𝑃𝐿𝑍 + 𝑃𝐿𝑍0 + 𝑃𝐿𝐵 + 𝑃𝐿𝐵0 + 𝑃𝐿𝐷 + 𝑃𝐿𝑋       (9) 

𝑃𝐿,𝑔  : total power losses 

𝑃𝐿𝑧  : load-dependent power losses in the meshing 

𝑃𝐿𝑍0 : no-load power losses in the meshing 

𝑃𝐿𝐵 : load-dependent power losses in the bearing 

𝑃𝐿𝐵0  : no-load power losses in the bearing 

𝑃𝐿𝐷  : power losses in the sealings 

𝑃𝐿𝑋  : other power losses 

Load-dependent losses (particularly those in the 

meshing) tend to be dominant at high loads [11] and 

explain why some backdrivability studies [12] consider 

only these. Yet, in our experience, the conditions required 

to initiate the movement – ideally with moderate output 

torques – are particularly important in characterizing 

backdrivability. Thus, it is essential to incorporate a no-

load losses component capable of representing the 

breakaway friction – based on the Stribeck model [2] – to 

the total viscous and Coulomb losses from equation (1). 

From (5), we define: 
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            𝜏𝐶,𝑔 =  𝜏𝐶𝑍,𝑔 + 𝜏𝐶0,𝑔 = 𝜇𝑔 ∙ 𝜏𝑏𝑐𝑘 + 𝜏𝐶0,𝑔           (10) 

                    𝜏𝐷,𝑔 = 𝐷𝑔𝑆 ∙ 𝑒−𝛽𝑔∙�̇�𝑜 + 𝐷𝑔𝐷 ∙ �̇�𝑂                (11) 

𝜏𝐶,𝑔 : gearbox’s Coulomb friction torque 

𝜏𝐶𝑍,𝑔 : gearbox’s load-dependent Coulomb friction torque 

𝜏𝐶0,𝑔 : gearbox’s load-independent Coulomb friction 

torque 

𝜇𝑔 : gearbox’s Coulomb-friction coefficient 

𝜏𝐷,𝑔 : gearbox’s viscous friction torque 

𝐷𝑔𝑆  : static friction factor, dominant at near-zero speeds 

𝐷𝑔𝐷   : dynamic friction factor, dominant at higher speeds 

𝛽𝑔 : gearbox’s lubrication transition coefficient 

2.2.2 Motor Losses 

Losses in electrical DC motors are also very different in 

nature and can be split into Joule (resistive) losses in the 

windings, Brush-drop losses (brushed DC motors), 

Mechanical friction losses, Core losses due to the rotating 

magnets, and Stray-load losses that account for extra 

losses occurring at high loads [13]: 

         𝑃𝐿,𝑚 ≈ 𝑃𝑅𝐽 + 𝑃𝐵𝑅 + 𝑃𝑀𝐸 + 𝑃𝐶𝑂 + 𝑃𝑆𝑇           (12) 

𝑃𝐿,𝑚: motor losses 

𝑃𝑅𝐽   : resistive (Joule) losses in the motor windings 

𝑃𝐵𝑅    : brush-drop losses 

𝑃𝑀𝐸    : mechanical friction losses 

𝑃𝐶𝑂    : core losses 

𝑃𝑆𝑇    : stray-load losses 

Joule losses originate due to the motor winding 

resistance causing a voltage drop proportional to the 

current I delivered by the motor. This leads to a 

dissipation of power which amounts to 𝑃𝑅𝐽 = 𝑅 ∙ 𝐼2, 

where R stands for the total winding resistance. In 

robotics, this is often the main source of power loss [14]. 

Joule losses are also known under several different names, 

such as “resistive losses”, “copper losses”, “Ohmic 

losses” or “heating losses”. 

Brush-drop losses: Brushed DC motors rely on graphite 

brushes to transfer current from the stator to the rotor. The 

current transfer results in a power loss of 

                          𝑃𝐵𝑅 = 𝐼 ∙ ∆𝑉𝑏𝑟𝑢𝑠ℎ                           (13) 

where ∆𝑉𝑏𝑟𝑢𝑠ℎ is the voltage drop across the brushes. The 

voltage drop depends on the composition of the brushes, 

contact pressure and the condition of the surface of the 

commutator, and must therefore be determined for every 

machine. Nevertheless, it is often assumed to be constant, 

with a value of ∆𝑉𝑏𝑟𝑢𝑠ℎ = 2𝑉 [15]. The brush-drop losses 

are therefore often approximated as 𝑃𝐵𝑅 ≈ 2 ∙ 𝐼, i.e., 

proportional to the current. 

Mechanical (friction) losses are mostly due to friction in 

the bearings, aerodynamic drag experienced by the rotor 

and often called windage losses, and – in the case of 

brushed DC motor – friction between the brushes and the 

commutator. These losses can be considered proportional 

to motor speed �̇�𝑚 (Coulomb friction) and, to some extent, 

to �̇�𝑚
2  (viscous friction). Windage losses are typically 

considered to be proportional to �̇�𝑚
3  [15]. In some cases, 

static mechanical friction losses can also be relevant. 

Core losses are linked to the rotating magnetic field. 

They can be subdivided into two main contributions. 

Hysteresis (re-magnetization or magnetic losses) losses 

represent the hysteresis in the motor curve, which is 

caused by the fact that some energy is needed to reverse 

the direction of the magnetic field, leading to a power loss 

𝑃𝑟𝑒𝑚𝑎𝑔 = 𝜏𝑚𝑎𝑔𝑛 ∙ �̇�𝑚 , with 𝜏𝑚𝑎𝑔𝑛  the torque needed for 

reversal of magnetization. Hysteresis losses are thus 

proportional to speed, similar to Coulomb friction. 

Secondly, there will be losses due to eddy currents in the 

magnetic core (iron losses). Eddy current losses are 

proportional to �̇�𝑚
2  and, can thus mathematically be 

included in the viscous friction losses. 

Stray losses account for extra losses occurring at high 

loads. They are mainly related to pulsations in the flux, 

caused primarily by the short-circuit current in the coil 

undergoing commutation. Stray losses are only relevant 

for large-size machines and can be neglected for small-

size motors [14]. 

This classification allows us to write: 

     𝜏𝐹,𝑚 = 𝜏𝑅,𝑚 + 𝜏𝐶0,𝑚 + 𝜏𝐷,𝑚 + 𝜏𝑊,𝑚 + 𝜏𝐵𝑅,𝑚 ≈    (14) 

  ≈ 𝑅
𝜏𝑏𝑐𝑘

2

𝑖𝑂
2 𝜂′

𝑂
2

𝑘𝑡
2

1

�̇�𝑂
+𝑖𝑂𝜏𝐶0,𝑚 + 𝑖𝑂𝐷𝑚𝑆𝑒−𝛽𝑚∙𝑖𝑂�̇�𝑜 + 𝑖𝑂

2 𝐷𝑚𝐷�̇�𝑂   (15) 

assuming small EC motors without brushes and negligible 

windage losses, as typically used in the robotics field. 

𝑅     : winding resistance 

𝜏𝑚   : torque delivered by the motor 

𝑘𝑡    : torque constant of the motor 

𝜏𝐿,𝑚 : motor's total loss torque 

𝜏𝑅,𝑚 : motor's resistance friction torque 

𝜏𝐶0,𝑚 : motor's Coulomb loss torque, load-independent 

𝜏𝐷,𝑚 : motor's viscous losses torque 

𝜏𝑊,𝑚 : motor's windage losses torque 

𝜏𝐵𝑅,𝑚 : motor's brush-drop losses torque 

𝜂′
0
 : gearbox’s backdriving efficiency 

𝐷𝑚𝑆 : static friction factor, dominant at near-zero speeds 

𝐷𝑚𝐷  : dynamic friction factor, dominant at higher speeds 

𝛽𝑚 : motor’s lubrication transition coefficient 
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2.2.3 Discussion on Backdriving Losses 

According to our model, robotic gearbox and motor losses 

can be classified according to the chart in Fig. 3. 

The influence of the speed-reduction ratio is not 

explicitly highlighted through the approach we have used 

to model losses during backdriving. Yet, it is worth 

reflecting on how it affects the relative impact of the 

different friction contributions, which in this case is less 

trivial than inertia. Dynamic viscous friction is naturally 

strongly dependent on speed, such that these losses tend 

to become relevant only after the movement is initiated.  

Consequently, the larger dynamic viscous losses in an 

actuator are typically encountered on the high-speed side, 

that is, the motor (𝐷𝑚𝐷) and the input elements of the 

gearbox (𝐷𝑔𝐷).  

A similar reflection can also be done about the motor's 

resistive electrical losses. Motor torques (and thus 

currents through the windings) are usually moderate 

during backdriving, so resistive backdriving losses can 

generally be disregarded. When braking regeneration 

techniques are used, backdriving motor torques and 

resistive losses tend to be more significant. In this case, a 

considerable part of the electrical losses could be 

generated in the motor driver's power stage and 

incorporating those into the model should be evaluated. 

2.3 Backdriving Stiffness 

Mechanical stiffness is the derivative of torque with 

respect to angular position. The gearbox speed-reduction 

ratio has again a substantial impact on how the torsional 

stiffness 𝐾𝐼  of a spring fixed to its input is perceived from 

the output as a backdriving stiffness 𝐾𝑏𝑐𝑘: 

           𝐾𝑏𝑐𝑘 =
𝑑(𝜏𝑏𝑐𝑘

∗ )

𝑑𝜃𝑂
∗ =

𝑖𝑔∙𝜂𝑔∙𝜏𝐼

(
𝜃𝐼
𝑖𝑔

)
= 𝜂𝑔,𝑠 ∙ 𝑖𝑔

2 ∙ 𝐾𝐼                (16) 

𝜏𝑏𝑐𝑘
∗  : output torque applied on a fixed spring end 

𝜃𝑂
∗  : angular displacement on gearbox output under 𝜏𝑏𝑐𝑘

∗  

Comparing this equation with (2), we see that speed-

reduction ratios have an analogous impact on backdriving 

stiffness and inertia. Yet, there is a fundamental difference 

in how these two properties accumulate for devices 

connected in series. For inertia, the equivalent inertia of 

two elements connected in series is the sum of the two 

inertias. For Stiffness, their equivalent stiffness does not 

correspond to the direct sum of the two stiffnesses but to 

their product divided by their sum. In order to obtain a 

similar equation as in (4), we can use instead the 

mechanical compliance (C, inverse of stiffness), which 

has the advantage that it can be directly added for 

elements connected in series: 

                 𝐶𝑏 =
1

𝐾𝑏
=

𝜃𝑂
∗

𝜏𝑏
∗ =

(
𝜃𝐼
𝑖𝑔

)

𝑖𝑔∙𝜂𝑔∙𝜏𝐼
=

𝐶𝐼

𝜂𝑔,𝑠∙𝑖𝑔
2 ;           (17) 

𝐶𝑏 : backdriving compliance 

𝐶𝐼 : torsional compliance of a spring on the gearbox input 

When higher reduction ratios are involved, equation 

(17) indicates that the compliance of the input elements 

will be substantially reduced by a factor close to the 

square of the speed-reduction ratio when reflected to the 

gearbox's output, thus making them practically negligible 

for the overall compliance (stiffness) of the system. Yet, 

rotational compliance is proportional to the inverse of the 

polar moment of inertia, which for shaft-like, cylindrical 

bodies, increases again with the 4th exponent of the radius, 

as it was the case for inertia as we saw in equation (7): 

                   𝐾𝑠ℎ𝑎𝑓𝑡 =  
𝜋 

2
∙ 𝑟𝑠ℎ𝑎𝑓𝑡

4 ∙ (
𝐺

𝐿
)                     (18) 

𝐾𝑠ℎ𝑎𝑓𝑡  : torsional compliance of a cylindrical shaft 

𝑟𝑠ℎ𝑎𝑓𝑡  : radius of the shaft 

𝐺  : modulus of rigidity of the shaft’s material 

L  : length of the shaft 

This indicates again that changes in size, particularly 

in radial direction, can rapidly become more relevant than 

the effect of the speed-reduction ratios, particularly if the 

speed-reduction ratios are moderate. 

The equation describing the overall system behavior, 

written in terms of compliance for convenience, becomes: 

𝐶𝑏𝑐𝑘 =
𝜂′

𝑂(𝐶𝑀+𝐶𝐼)

𝑖𝑂
2 +

𝜂′
𝑃𝑖′

𝑃
2

𝐶𝑃

𝑖𝑂
2 +

𝜂′
𝐶𝑖𝑃

2 𝐶𝐶

𝑖𝑂
2 + (𝐶𝐿 + 𝐶𝑂)   (19) 

3 Scaling Laws 

Scaling laws are practical tools used in engineering to 

predict the impact of a reduced set of significant variables 

on another system variable of interest. Often, these 

relationships are complex in nature and involve 

substantial interdependencies with other variables and 

design parameters. In scaling laws, accurate observation 

of these interdependencies is typically sacrificed to obtain 

a generic rule that provides an approximate yet intuitive 

idea of the underlying relationship between the significant 

variables and the system variable. 

In this sense, the following subsections explore to 

which extent practical scaling laws can be developed to 

intuitively understand how the backdriving parameters of 

      

      

                 

                

                  

       

        

         

Fig. 3. Classification of the Torque Losses in the gearbox (Gbox) 

and electric motor (Mot) of an electric actuator 
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an actuator’s gearbox and motor are related to its 

geometry, speed-reduction ratio, and torque capability. 

3.1 Scaling backdriving Inertia 

To establish the scaling laws linking backdriving inertia 

with torque capacity and speed-reduction ratio, we can 

take advantage of the dimensional scaling laws set in our 

previous work for some of these parameters. 

3.1.1 Gearbox inertia scaling 

In [16], we demonstrated the validity of the following 

scaling laws, derived analytically, and validated 

empirically for different types of robotic transmissions: 

(a)  For conventional planetary gearboxes (PGT): 

                       𝐽𝑃𝐺𝑇   ∝  (
𝐿𝑔∙𝑑𝑔

4 ∙𝑖𝑔
2

𝑎
)                          (20) 

𝐿𝑔 : axial length of the gearbox 

𝑑𝑔  : outer diameter of the gearbox 

𝑎  : number of planetary stages of the gearbox 

(b)    For Harmonic Drive (HD) and Cycloid Drive (CD) 

transmissions: 

                    JHD   ∝  (Lg ∙  dg
4 ∙  ig

2 )    ∝  JCD                     (21) 

 These laws provide an accurate tool for predicting 

how geometry and speed-reduction ratio will affect 

inertia, as we can see graphically in Fig.4. 

3.1.2 Motor inertia scaling 

The following scaling law for the rotor's inertia of an 

electric motor is generally adopted [17], [6], [18]: 

                  𝐽𝑚   ∝   (𝐿𝑚 ∙ 𝑟𝑔𝑎𝑝
3 )  ∝   (𝐿𝑚 ∙ 𝑑𝑚

3 )                (22) 

𝐿𝑚 : axial length of the motor 

𝑟𝑔𝑎𝑝 : radius of the magnetic interface rotor-stator 

𝑑𝑚  : outer diameter of the motor 

Yet, our analysis using Maxon EC and EC-Flat motors 

frequently used in the robotic community indicates that 

the following empirical scaling law is actually closer to 

the observed behavior, as shown in Fig. 5: 

                              𝐽𝑚   ∝   (𝐿𝑚 ∙ 𝑑𝑚
4 )                            (23) 

This equation also seems reasonable from an analytic 

point of view. If we assume that the mass of the motor is 

approximately proportional to the product of its length 

and section area, its moment of inertia is roughly 

proportional to the mass multiplied by the square of its 

diameter, as is the case for a solid cylinder. 

3.2 Scaling Backdriving Losses 

As we saw in 2.2, the nature of backdriving gearbox and 

motor losses is quite complex. Consequently, we have not 

succeeded in determining simple analytic scaling laws 

that can describe with reasonable accuracy how these 

losses are related to the torque and speed-reduction ratio 

of a gearbox or an electric motor. 

Additionally, manufacturers of gearboxes and motors 

generally do not provide sufficient data to characterize 

their losses accurately, according to our model in Fig. 3. 

In order to obtain an intuitive idea of how design choices 

Fig. 4. Correlation of the proposed geometric scaling laws of 

backdriving inertia of equation (21) with  planetary (PGT) 

transmissions from Neugart, Harmonic Drives (HD) of the CSF, 

CSG, SHF, SHG, and HFUS series, and Cycloid Drives (CD) of 

the Sumitomo FC T-series, data from [16], and the Spinea CD 

G- series. The curves (PGT, HD, CD) follow a linear trend 

reasonably parallel to that of the proposed law, which in 

logarithmic representation indicates that the backdriving inertia 

is a lineal function of the proposed law. The backdriving inertia 

is calculated from the input inertia given in the catalogue, 

multiplied by the square of the speed-reduction ratio, thus 

disregarding the effects of the gearbox’s internal efficiency. Note 

that the backdriving inertias of the HD and PGT are comparable, 

while the inertias of the CD are substantially lower for 

Sumitomo. For Spinea, which was not included in the study in 

[16], the G- series seems to have two differentiated constructive 

solutions with an offset with respect to each other. 

Figure 5. Correlation of the proposed geometric scaling law 

from equation (23) with rotor inertia in Maxon electric motors 

from EC and Flat series, data from [16]. 
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affect losses in these devices, we have tried a more 

practical approach, focusing our analysis on the data 

available from their datasheets and exploring these data to 

identify suitable scaling laws for their losses. 

3.2.1 Gearbox losses scaling 

PGT manufacturers typically include only the efficiency 

at full load in their datasheet. CD and HD manufacturers 

include additionally the maximum torque required to 

backdrive the gearbox and graphs to characterize the 

efficiency’s dependency on input speed, output load, and 

temperature. 

The backdriving torque is a useful tool to predict 

backdrivability during breakaway, while the efficiency 

graphs allow determining the levels of Coulomb and 

dynamic viscous friction during regenerative backdriving. 

3.2.2 Motor losses scaling 

Motor manufacturers conventionally assume that 

electrical losses (Joule losses in the winding) are largely 

dominant and do not include elements in their datasheets 

to describe in detail mechanical losses. The dynamic part 

of a motor’s viscous damping torque can be estimated 

using the no-load current 𝐼𝑚,𝑛𝑙 and the no-load angular 

velocity �̇�𝑚,𝑛𝑙  [19]: 

                               𝐷𝑚𝐷 ≈
𝑘𝑡 ∙ 𝐼𝑚,𝑛𝑙

�̇�𝑚,𝑛𝑙

                                 (24) 

Other mechanical losses, including static viscous 

friction and Coulomb friction, are generally disregarded 

[19]. Although this is an effective strategy for normal 

motor operation, where the electrical losses tend to be 

largely dominant, its validity during regenerative 

operation is not yet confirmed. Specifically, static viscous 

losses and load-independent Coulomb friction can have a 

substantial relevance during breakaway backdriving that 

recommend a specific experimental characterization of 

these losses if a more detailed model is needed. 

3.3 Scaling Backdriving Stiffness 

The torsional stiffness of a given body is again strongly 

related to its geometry, as it was the case for inertia. This 

provides a possibility to attempt the derivation of analytic 

scaling laws. Equation (18) relates the torsional 

compliance (inverse of stiffness) of a solid cylinder and, 

assuming the same material – and thus same modulus of 

rigidity – announces a potentially relevant scaling rule 

given by: 

                         𝐾𝑠ℎ𝑎𝑓𝑡   ∝  (𝐿 ∙ 𝑑𝑠ℎ
4 )                           (25) 

3.3.1 Gearbox stiffness scaling 

Fig. 6 shows that the slope of the trend for Spinea CDs 

and Neugart PGTs provides a reasonable match with the 

predictions of equation (24). For PGTs, there is also a 

clearly identifiable effect of the number of stages not 

included in this equation: Neugart's catalog shows that, 

for a PGT, a larger number of stages results in a longer 

gearbox that does not increase stiffness proportionally, as 

predicted by equation (24). This phenomenon is behind 

the four series (one per gearbox diameter) of three points 

(for one, two, and three stages) that the Alpha gearbox 

series of Neugart shows in Fig. 6. In addition, a notable 

deviation is also recognizable for the largest size of the 

Neugart models analyzed, which shows a lower torsional 

stiffness than the trend and imposes an additional validity 

limitation for the scaling rule given by equation (25). 

For HD, Fig. 6 shows also that this scaling law does 

not provide an accurate prediction. In this case, a closer 

analysis shows that this deviation is related to the effect 

of the speed-reduction ratio, not covered by equation (25): 

HD gearboxes show a considerable gain in torsional 

stiffness with higher speed-reduction ratios, which is not 

present in CD and PGT gearboxes and tends to saturate as 

the speed-reduction ratio increases. Beyond 80:1, a 

further increase does not lead to higher stiffness. 

 

Figure 6. Correlation of the proposed geometric scaling laws for 

gearbox stiffness given by equation (24) using catalog data from 

Neugart (Alpha series), Harmonic Drive (CSF, CSG, SHF, 

SHG, HFUS series), and Spinea cycloid drives (G, T, E, H, and 

M series). The correlation provides a reasonable trend match for 

Spinea but shows significant limitations for Neugart and HD. 

Gearbox manufacturers directly include the 

backdriving stiffness in their datasheet such that it is 

unnecessary to correct these values with the speed-

reduction ratio, as we had to do for inertia calculations. 

3.3.2 Motor stiffness scaling 

For motors, stiffness is not a parameter systematically 

included by the manufacturers in datasheets. This renders 

it not possible for us to verify the validity of equation (25) 

for motors. In addition, a closer look at how electrical 

motors is designed indicates that other non-geometrical 

parameters may actually play a considerable role. 

Our experience indicates that the motor's output shaft 

could have a fundamental contribution to its backdriving 

stiffness. Practically, the dimension of the motor's output 

shaft is chosen to provide sufficient torsional rigidity to 
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withstand the maximum output torque of the motor, with 

a certain safety coefficient. Accordingly, motor torque 

could provide a scaling law for motor stiffness. Yet, there 

is unfortunately also a limitation to this approach: 

manufacturers use different windings on a given motor 

configuration to adapt the motor to different applications. 

Although this substantially affects the motor's output 

torque, the shaft diameter is not typically adjusted, as this 

would lead to complex and expensive modifications. This 

means that our torque scaling rule can only be valid if we 

include in our analysis only the motor configurations with 

the highest torque. Again, as motor stiffness is typically 

not specified by manufacturers, it is unfortunately not 

possible for us at this stage to validate any of these 

approaches until a broad empirical study is available. 

3.4 Scaling Torque Capacity 

3.4.1 Gearbox torque scaling  

The following torque scaling laws are developed in [16] 

for different types of robotic transmissions: 

(a) For conventional planetary gearboxes (PGT): 

                            𝜏𝑃𝐺𝑇   ∝  (
𝐿𝑔∙𝑑𝑔

2

𝑎
 )                           (26) 

This allows us to relate torque capacity, backdriving 

inertia, and stiffness with the following scaling laws: 

                          
𝐽𝑃𝐺𝑇

𝜏𝑃𝐺𝑇
  ∝  (𝑑𝑔

2 ∙ 𝑖𝑔
2)                           (27) 

                             
𝐾𝑃𝐺𝑇

𝜏𝑃𝐺𝑇
  ∝  𝑑𝑔

2                                 (28) 

(b) For Harmonic Drive (HD) transmissions: 

                                      𝜏𝐻𝐷   ∝  (𝑑𝑔
3)                             (29) 

                                
𝐽𝐻𝐷

𝜏𝐻𝐷
  ∝  (𝐿𝑔 ∙ 𝑑𝑔 ∙ 𝑖𝑔

2)                        (30) 

                                      
𝐾𝐻𝐷

𝜏𝐻𝐷
  ∝  𝐿𝑔 ∙ 𝑑𝑔                         (31) 

(c) For Cycloid Drive (CD) transmissions: 

                             𝜏𝐶𝐷   ∝  (
𝑑𝑔

4

𝐿𝑔
)                               (32)   

                                  
𝐽𝐶𝐷

𝜏𝐶𝐷
  ∝  (𝐿𝑔

2 ∙ 𝑖𝑔
2)                           (33)  

                                      
𝐾𝐶𝐷

𝜏𝐶𝐷
  ∝  (𝐿𝑔

2 )                           (34) 

The inertia divided by torque rule is represented in 

Fig. 7, where we can appreciate that it only provides a 

good trend prediction for the PGT. For stiffness divided 

by torque, the prediction of equations (28), (31), and (34) 

did not lead to a good match for none of the gearboxes. 

Fig. 8 represents an empirical scaling law indicating that 

stiffness tends to follow the same trend as acceleration 

torque. 

3.4.2 Motor torque scaling 

Haddadin et al. validated experimentally [17] the 

following scaling law for the stall torque 𝜏𝑚,𝑚𝑎𝑥 of an 

electric motor: 

                      𝜏𝑚,𝑚𝑎𝑥   ∝   (𝐿𝑚 ∙ 𝑑𝑚

5
2⁄

)                    (35) 

This allows us to relate torque capacity and 

backdriving inertia in the following scaling law, which 

could not be validated empirically, see Fig.9: 

                          
𝜏𝑚.𝑚𝑎𝑥

𝐽𝑚
  ∝  (𝑑𝑚

−3
2⁄

)                            (36) 

4 Influence of the operating cycle 

The operating conditions have a substantial influence on 

an actuator’s backdrivability, first and foremost, through 

Figure 8. Correlation between backdriving stiffness and 

acceleration (maximum repeatable) torque capacity for 

Planetary Gearboxes (Neugart, Alpha series), Harmonic Drive 

(CSF, CSG, SHF, SHG, HFUS series), and Cycloid Drive 

(Spinea, G, GH, T, E, H, M series) gearboxes.  

Fig. 7. Correlation between backdriving inertia and acceleration 

(maximum repeatable) torque capacity for Planetary Gearboxes 

Neugart (Alpha series), Harmonic Drive (CSF, CSG, SHF, 

SHG, HFUS series), and Spinea cycloid drives (G, T, E, H, and 

M series). The trend matches acceptably well with equation (26) 

for the PGTs, but it is not accurate for HD – equation (30) – and 

CD – equation (33) – gearboxes. 
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the direct impact of torque, position, speed, and 

acceleration on the motion equation (1), but also through 

the effect of these elements on gearbox and motor losses. 

Accordingly, to assess the backdrivability of an 

actuator for a certain application, we must identify the 

operating conditions at which backdriving will occur, 

differentiating between breakaway backdriving (is the 

backdriving torque sufficient at the operating points 

where the backdriving condition is initiated?) and 

regenerative backdriving (is the backdriving efficiency 

sufficient at regenerative operating conditions to enable 

regeneration?). 

Practically, this can be done by first identifying the 

operating cycle points where the actuator changes from 

forward-driving to backdriving operation and vice versa. 

This can be made either by reversing speed (need to 

overcome static friction) or by reversing torque (need to 

overcome backlash only). A transition from forward-

driving to backdriving characterizes a point in the 

operating cycle where we must verify if the backdriving 

torque is enough to overcome the actuator's backdriving 

friction and if the actuator's inertia is low enough to enable 

the remaining useful torque to induce the required 

backdriving acceleration. Failing to overcome friction 

and/or induce the backdriving acceleration at the switch 

point indicates that the actuator is not suitable for the 

backdriving needs of the system. 

Once this first step is cleared, we can try use the 

actuator’s backdriving parameters from section 2 to assess 

the regenerating capacity during the backdriving period 

that follows this transition point. 

 

4.1 Example of a Knee Prosthesis 

In [21], Tucker and Fite analyze how mechanical damping 

affects regeneration for a powered transfemoral 

prosthesis. Verstraten et al. present also a more recent 

study in [22] this time for an ankle prosthesis, in which 

the effect of backdrivability and regeneration are also 

incorporated. Here, we include a basic yet illustrative 

analysis of how regeneration is affected by actuator’s 

backdrivability for a knee prosthesis. A knee prosthesis is 

particularly interesting because, during normal walking, 

the human knee sees frequent bidirectional power flow: to 

enable walking, the knee injects power into the leg 

(positive power), but it must also absorb mechanical 

power (negative power), as we can see in Fig.10. A 

prosthesis capable of mimicking this behavior must 

include a backdrivable actuator, capable of absorbing 

energy – ideally in an efficient manner – when the 

mechanical power is negative. 

As an example, we select for the actuator of our knee 

prosthesis a Harmonic Drive SHF-17-120 with a gear 

ratio of 120:1 and an acceleration torque of 54Nm, larger 

than the max. absolute load torque of the knee (46Nm, see 

Fig.10). We combine this gearbox with a 90Watt Maxon 

EC45 Flat motor with a nominal torque of 0.167Nm, 

which will need to produce an output torque 3x larger than 

its nominal torque (0.5Nm) to produce the 46Nm required 

at the output of the HD gearbox, which has an efficiency 

of 75%. The main backdriving relevant parameters of this 

combination can be extracted from their respective 

catalogs and are given in Table I. 

Table I. Key SHF-17-120 HD gearbox and 90Watt Maxon 

EC45-flat motor parameters extracted from their respective 

catalogs, combined to build an actuator for the knee prosthesis. 

The motor’s backdriving stiffness is calculated from equation 

(7), based on the dimensions of its output shaft. The dynamic 

viscous coefficient of the gearbox is calculated from the 

catalog’s efficiency graphs at different speeds. The motor 

dynamic viscous coefficient calculated using equation (23). 

 

Using equations (10), (11) and (14), and assuming 

dynamic Coulomb friction to be around 50% of the 

starting torque for the gearbox, this leads to the following 

losses: 

𝜏𝑅,𝑚 ≈
0.447

(120∙0.75∙0.0295)2 ∙
𝜏𝑏𝑐𝑘

2

𝜂′0∙�̇�𝑂
= 0.0475 ∙

𝜏𝑏𝑐𝑘
2

𝜂′0∙�̇�𝑂
  (37) 

   𝜏𝐷,𝑚 = 120 ∙ 𝐷𝑚𝑆 ∙ 𝑒−120∙𝛽𝑚∙�̇�𝑂 + 2.02 ∙ �̇�𝑂      (38) 

                               
          

          
          

                                 

                                               

                               

                     

                             

                             

                         

                         

                                  

Figure 9. Correlation between backdriving inertia and 

acceleration (maximum repeatable) torque capacity (estimated 

as 2.5 times the catalogue’s nominal torque) for Maxon EC and 

EC-Flat electric motors. The correlation seems to follow an 

empirical scaling rule given by 𝐽𝑚 𝛼  𝜏𝑚.𝑚𝑎𝑥
1.5   that does not 

directly correspond to equation (36). Also note that, for a given 

torque, the flat motors always have considerably larger inertia. 

This on the other side correlates well with equation (35): the 

larger diameters of a flat motor configuration have a stronger 

impact on inertia than on torque. 
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                             𝜏𝐶0,𝑔 ≈
34

2
= 17𝑁𝑚                 (39) 

   𝜏𝐿,𝑔 ≈ 0.2 ∙ 𝜏𝑏𝑐𝑘 + 17 + 𝐷𝑔𝑆 ∙ 𝑒−𝛽𝑔∙�̇�𝑂 + 0.05 ∙ �̇�𝑂 (40) 
 

 

Fig. 10. Mechanical power (Watt), torque (Nm), and speed 

(rpm) vs. time of a human knee during walking at normal speed 

for a 75kg person, data from [20]. For a knee prosthesis trying 

to mimic this reference cycle, negative power indicates that the 

actuator should be backdriven and have the ability to regenerate 

between I to II, III to IV, V to VI, and VII to VIII. 

Using equations (6) and (15), the backdriving inertias 

and stiffnesses of the gearbox (g) and motor (m) are: 

            𝐽𝑏𝑐𝑘,𝑔 ≈ 1202 ∙ 0.193 = 2.78𝑘𝑔𝑚2        (41) 

           𝐽𝑏𝑐𝑘,𝑚 ≈ 1202 ∙ 0.135 = 1.94𝑘𝑔𝑚2        (42) 

                   𝐾𝑏𝑐𝑘,𝑔 ≈ 10000𝑁𝑚/𝑟𝑎𝑑                 (43) 

                   𝐾𝑏𝑐𝑘,𝑔 ≈ 70000𝑁𝑚/𝑟𝑎𝑑                 (44) 

We can see that we do not have enough data to identify 

the terms 𝐷𝑔𝑆 ∙ 𝑒−𝛽𝑔∙�̇�𝑂 , 𝜏𝐶0,𝑔, 120 ∙ 𝐷𝑚𝑆 ∙ 𝑒−120∙𝛽𝑚∙�̇�𝑂 . If 

we assume that these can be neglected for an initial 

evaluation, we can now write equation (1) as: 

𝜏𝑏𝑐𝑘 (0.8 −
0.0475∙𝜏𝑏𝑐𝑘

𝜂′0∙�̇�𝑂
) − 17 − 2.07 ∙ �̇�𝑂 == 4.7 ∙ 𝜃�̈� + 8750 ∙ 𝜃𝑂  (45) 

On Fig.10, we can identify the transition points from 

positive to negative power, marked as I, III, V, and VII. 

The transition points from negative to positive power are 

II, IV, VI, and VIII. This defines four periods of negative 

power – and thus actuator backdriving: I to II, III to IV, V 

to VI, and VII to VIII. Note that the transition points I, III, 

V, and VII where these negative power periods are 

initiated correspond all to zero-torque, thus without static 

friction (non-zero speed). 

• Negative power section I-II:  

Breakaway: according to the data from [20], point I 

corresponds to instant 4.6 sec. and to a backdriving torque 

of 0Nm. Of the up to 34Nm of torque required to initiate 

the backdriving movement, around half of it (17Nm) is 

required to maintain movement as the torque sign 

changes. This means that the available backdriving torque 

is initially insufficient to backdrive the gearbox and thus, 

if we would stop the motor supply of torque, the actuator 

would be blocked. To enable the actuator to follow the 

required speed trajectory, the motor must actually 

continue to deliver positive power.  

Regeneration: once the backdriving torque exceeds the 

17Nm (at instant 6.5 sec.) required to backdrive the 

gearbox, backdriving is enabled and the motor starts to 

have the ability to regenerate energy. At instant 13.9 sec., 

the angular speed becomes zero and the motor must again 

deliver power. In Fig.11 we can see that, once we consider 

the losses and the torque required to accelerate, the 

regeneration capability is substantially limited. 

• Negative power sections III-IV, V-VI, VII-VIII:  

During the next three sections with negative power, the 

torque is not enough to overcome friction (see Fig. 11) 

and the system is non-backdrivable, making regeneration 

not viable: although the system is trying to inject 

mechanical power into the actuator, the non-backdrivable 

condition forces the motor to provide positive power to 

enable the knee to follow the target trajectory. 

Globally, Fig. 11 shows that the electrical power 

required to enable the knee prostheses to follow the 

torque-speed trajectory of a human knee during natural 

gait is an order of magnitude larger than the mechanical 

power required by the human knee itself. This is the 

consequence of the low backdriving performance of the 

selected actuator, combined with the relatively high 

starting torque of the gearbox. 

In terms of backdrivability, friction is clearly the main 

responsible of the poor backdriving performance of this 

actuator. The high backdriving breakaway torque of the 

HD gearbox strongly makes that only during about 2/3 of 

the time of the I to II period is backdriving operation 

possible. Additionally, once the movement is initiated, a 

large amount of the backdriving energy is lost in 

mechanical and electrical losses in gearbox and motor. 

 

Fig. 11. Comparison of the power vs. time of a human knee 

during walking at normal speed for a 75kg person, with the 

electrical power required by a knee actuator composed by an 

SHF-17-120 HD gearbox and a 90Watt Maxon EC45-flat motor. 

The frequent backdriving operation (negative power) of the 

human knee and the low backdrivability performance of the 

actuator strongly limit the regeneration potential, which his only 

possible in the time between 6.5 and 13.9 sec. Additionally, the 
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low torques and relatively high speeds, combined with the high 

starting and backdriving torques of the HD gearbox, require 

over-dimensioning the actuator’s motor to match a max. 

(positive) power demand four times larger than the human knee. 

5 Conclusions 

Actuator backdriving is a frequent condition in human 

(and more general in animal) movement that derives from 

the need to enable bidirectional power flow in our 

interactions with the environment. This need is naturally 

extended to human-centered robotic devices that, in order 

to perform their activities, must themselves interact 

directly with humans and their environments. 

Traditionally, high speed-reduction ratio gearboxes 

have been associated with actuators with low 

backdrivability due to the substantial impact of high-

speed ratios on reflected inertia. Our analysis invalidates 

this hypothesis and provides an alternative model of 

backdrivability that reflects the influence of a large 

number of factors and demonstrates the need for a much 

broader perspective to reach a reliable assessment. Instead 

of considering only inertia and the effect of the squared 

speed-reduction ratio, our model complemented with 

some scaling laws show the relevance of how speed-

reduction ratio affects motor inertia, as larger motors are 

needed to compensate for lower speed-ratios. This is 

particularly relevant as dimensional changes strongly 

impact inertia and efficiency affects how this inertia is 

reflected to the gearbox output. Stiffness and the losses of 

gearbox and motor can also have a substantial 

contribution, particularly in combination with the specific 

operating conditions. In section 4 we demonstrate how 

limited actuator backdrivability is largely responsible for 

the substantially larger power consumption of an actuated 

knee prosthesis, compared to a human knee. 

Some parameters required to assess an actuator's 

backdrivability accurately are not available from the 

manufacturer's datasheets. Nevertheless, our model 

provides the possibility to combine available data with 

basic scaling laws to assess the backdriving performance 

of an actuator and guide the selection of a suitable actuator 

considering its backdriving performance. Two significant 

limitations to this approach are the motor’s mechanical 

losses and the backdriving stiffness, for which we provide 

some practical assumptions to compensate for the absence 

of commercial data and relevant research studies. 

A relevant limitation of this study lies in the non-

consideration of the motor driver, that can have 

substantial influence on losses during regenerative 

backdriving. Also, the relevance of magnetic stiffness 

between the motor’s rotor and stator could not be 

established, to validate the assumption of the higher 

relevance of the rotor’s mechanical stiffness. 

Derived research directions include (i) the study of the 

stiffness of electrical motors, to validate our hypothesis in 

section 3.3.2 and search for generic and accurate scaling 

laws, (ii) the characterization of the mechanical losses of 

commercially available electric motors, including the 

recently proposed high-torque motors, (iii) the search 

empirical scaling laws to help us predict trends of inertia 

in HDs and understand how gearbox inertia and stiffness 

relate to torque, and (iv) to extend the list of 

manufacturers and models and broaden our understanding 

of the validity of the proposed scaling laws. 
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